skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bigdelou, Parnian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract The plasma membrane of eukaryotic cells is asymmetric with respect to its phospholipid composition. Analysis of the lipid composition of the outer leaflet is important for understanding cell membrane biology in health and disease. Here, a method based on cyclodextrin-mediated lipid exchange to characterize the phospholipids in the outer leaflet of red blood cells (RBCs) is reported. Methyl-α-cyclodextrin, loaded with exogenous lipids, was used to extract phospholipids from the membrane outer leaflet, while delivering lipids to the cell to maintain cell membrane integrity. Thin layer chromatography and lipidomics demonstrated that the extracted lipids were from the membrane outer leaflet. Phosphatidylcholines (PC) and sphingomyelins (SM) were the most abundant phospholipids in the RBCs outer leaflet with PC 34:1 and SM 34:1 being the most abundant species. Fluorescence quenching confirmed the delivery of exogenous lipids to the cell outer leaflet. The developed lipid exchange method was then used to remove phosphatidylserine, a phagocyte recognition marker, from the outer leaflet of senescent RBCs. Senescent RBCs with reconstituted membranes were phagocytosed in significantly lower amounts compared to control cells, demonstrating the efficiency of the lipid exchange process and its application in modifying cell–cell interactions. 
    more » « less